Highly Secure Strong PUF based on Nonlinearity of MOSFET Subthreshold Operation
نویسندگان
چکیده
Silicon physical unclonable functions (PUFs) are security primitives relying on intrinsic randomness of IC manufacturing. Strong PUFs have a very large input-output space which is essential for secure authentication. Several proposed strong PUFs use timing races to produce a rich set of responses. However, these PUFs are vulnerable to machine-learning attacks due to linear separability of the output function resulting from the additive nature of timing delay along timing paths. We introduce a novel strong silicon PUF based on the exponential current-voltage behavior in subthreshold region of FET operation which injects strong nonlinearity into the response of the PUF. The PUF, which we term subthreshold current array (SCA) PUF, is implemented as a two-dimensional n×k transistor array with all devices subject to stochastic variability operating in subthreshold region. Our PUF is fundamentally different from earlier attempts to inject nonlinearity via digital control techniques, which could also be used with SCA-PUF. Voltages produced by nominally identical arrays are compared to produce a random binary response. SCA-PUF shows excellent security properties. The average inter-class Hamming distance, a measure of uniqueness, is 50.3%. The average intra-class Hamming distance, a measure of response stability, is 0.6%. Crucially, we demonstrate that the introduced PUF is much less vulnerable to modeling attacks. Using a machine-learning technique of support-vector machine with radial basis function kernel for best nonlinear learnability, we observe that “information leakage” (rate of error reduction with learning) is much lower than for delay-based PUFs. Over a wide range of the number of observed challenge-response pairs, the error rate is 3− 35X higher than for earlier designs.
منابع مشابه
An Arbiter PUF Secured by Remote Random Reconfigurations of an FPGA
We present a practical and highly secure method for the authentication of chips based on a new concept for implementing strong Physical Unclonable Function (PUF) on field programmable gate arrays (FPGA). Its qualitatively novel feature is a remote reconfiguration in which the delay stages of the PUF are arranged to a random pattern within a subset of the FPGA’s gates. Before the reconfiguration...
متن کاملPhysical Unclonable Function Hardware Keys Utilizing Kirchhoff-law-johnson-noise Secure Key Exchange and Noise-based Logic
Weak unclonable function (PUF) encryption key means that the manufacturer of the hardware can clone the key but not anybody else. Strong unclonable function (PUF) encryption key means that even the manufacturer of the hardware is unable to clone the key. In this paper, first we introduce an “ultra” strong PUF with intrinsic dynamical randomness, which is not only unclonable but also gets renewe...
متن کاملMemristive crypto primitive for building highly secure physical unclonable functions
Physical unclonable functions (PUFs) exploit the intrinsic complexity and irreproducibility of physical systems to generate secret information. The advantage is that PUFs have the potential to provide fundamentally higher security than traditional cryptographic methods by preventing the cloning of devices and the extraction of secret keys. Most PUF designs focus on exploiting process variations...
متن کاملLow-Power, Stable and Secure On-Chip Identifiers Design
Trustworthy authentication of an object is of extreme importance for secure protocols. Traditional methods of storing the identity of an object using non-volatile memory is insecure. Novel chip-identifiers called Silicon Physical Unclonable Functions (PUFs) extract the random process characteristics of an Integrated Circuit to establish the identity. Though such types of IC identifiers are diff...
متن کاملPhysical uncloneable function hardware keys utilizing Kirchhoff-law-Johnson-noise secure key exchange and noise-based logic
Weak uncloneable function (PUF) encryption key means that the manufacturer of the hardware can clone the key but anybody else is unable to so that. Strong uncloneable function (PUF) encryption key means that even the manufacturer of the hardware is unable to clone the key. In this paper, first we introduce an "ultra"-strong PUF with intrinsic dynamical randomness, which is not only not cloneabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012